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Abstract: In this paper we present the QED photonic radiative cor-

rections of the e+e− → tt̄ process by using the factorization of ISR

and GRACE system as a numerical calculation method. The results

exported from GRACE system are compared with the exact O(α2) the-

oretical calculations, and good agreement is found. We consider the

beam polarization and the angular distribution as well. The δISR is

given to evaluate the effect of ISR. Finally, the deviation between O(α2)

and O(α2) is also discussed.
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1 INTRODUCTION

Radiative corrections are really important for precise prediction of the cross sections for the

study on high-energy e+e− → tt̄ annihilation processes. Among various corrections from

the electro-weak interactions, photonic radiative corrections are known as the corrections to

the initial-state particles which give a significant contribution. The final state corrections

result just have a small contribution in the total cross section [1], [2].

To investigate the initial-state radiation (ISR) of e+e− → tt̄ annihilation process, we use

the factorization of ISR as theoretical calculation method. After calculating out the ISR

function, we inspect the order O(α) and O(α2) corrections by re-summed formula. In

this study, we focus on the electroweak correction contribution in the case that it is the

dominant part where as QED correction is controllable. Thus, we apply the numerical

calculation using GRACE system to evaluate the total cross section of all diagrams of

e+e− → tt̄ process in the center-of-mass energy range from 350 GeV to 1 TeV. The results

exported from GRACE system are compared with the exact O(α2) theoretical calculations,

and good agreement is found. Considering the beam polarization in the next step, using
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GRACE system, we calculate out the difference between the total cross section as the

function of center-of-mass energy of tt̄ pair production with the left-handed electron and

right-handed positron initial polarization and discuss about the effect of ISR by using

the results in ideal polarization case e−e+(100%, 100%) and in reality polarization case

e−e+(80%, 30%) as well. The effect of ISR on the angular distribution is also important

and need to be investigated. After that, we consider the effect of ISR correction by using

the formula δISR = (σISR − σNo ISR)/σNo ISR. Finally, we discuss the deviation between the

total cross section in order O(α2) and O(α2) at 500 GeV and 800 GeV center-of-mass

energy.

2 CALCULATION METHOD

Firstly, we use the factorization method to calculate the ISR function. The process in

which one photon is radiated during the scattering of an electron has the diagrams as

bellow

kp

p′

+ k

p

p′

Let M0 denote the part of the amplitude that comes from the electron’s interaction with

the external field. Using Feynman rules, the amplitude for the whole process is

|M|2 = |M1 +M2|2 =M1M†1 +M2M†2 + 2M1M†2. (1)

In the soft-photon approximation, the squared amplitude becomes

|M|2 = e2
[

(p · ε∗)2

(p · k)2
+

(p′ · ε∗)2

(p′ · k)2
− 2(p · ε∗)(p′ · ε∗)

(p · k)(p′ · k)

]
|eM0|2. (2)

Insert an additional phase-space integration for the photon variable k, we have the cross

section for our process in terms of the elastic cross section

dσ(p→ p′ + γ) = dσ(p′ → p) ·
∫

d3k

(2π)3
1

2k0

∑
λ=1,2

e2
∣∣∣∣p′ · ε(λ)p′ · k

− p · ε(λ)

p · k

∣∣∣∣2. (3)

Expand the absolute sign term and plug the results we obtained back to Eq. (3), we have

Total probability ≈ α

π

|q|∫
0

dk0
1

k0
I(v,v′), (4)
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where

I(v,v′) =

∫
dΩk̂

4π

(
2(1− v · v′)

(1− k̂ · v)(1− k̂ · v′)
− m2/E2

(1− k̂ · v′)2
− m2/E2

(1− k̂ · v)2

)
. (5)

Since I(v,v′) is dependent of k, the integral diverges at its lower limit. This is the famous

problem of infrared divergences in QED perturbation theory. We can artificially make the

integral in (4) well-defined by pretending that the photon has a very small mass µ. This

mass would then provide a lower cutoff for the integral, allowing us to write the result of

soft Bremsstrahlung quantum computation as

dσ
(
p→ p′ + γ(k)

)
= dσ(p→ p′) · α

2π
log

(
−q2

µ2

)
I(v,v′)

−q2→∞
≈ dσ(p→ p′) · α

π
log

(
−q2

µ2

)
log

(
−q2

m2

)
,

(6)

where

α

π

|q|∫
0

dk0
1

k0
I(v,v′) =

α

π
I(v,v′) log

(
−q2

µ2

)
. (7)

The q2 dependence of this result, known as Sudakov double logarithm, is physical. However,

the dependence on µ presents a problem that we must solve in the next steps.

Next, we evaluate the electron vertex function. Assign momenta on the diagram as follows:

q
p

kp− k ↑

k′ = k + q

p′

Applying the Feynman rules, we find that Γµ = Γµ + δΓµ to order α, where

ū(p′)δΓµ(p′, p)u(p) = 2ie2
∫

d4k

(2π)4
ū(p′)[/kγµ/k

′
+m2γµ − 2m(k + k′)µ]u(p)(

(k − p)2 + iε
)
(k′2 −m2 + iε)(k2 −m2 + iε)

. (8)

Using the contraction identity γνγµγν = −2γµ and the “Feynman parameters”, our ex-

pression for the O(α) contribution to the electron vertex then becomes

ū(p′)δΓµ(p′, p)u(p) = 2ie2
∫

d4`

(2π)4

1∫
0

dx dy dz δ(x+ y + z − 1)
2

D3

× ū(p′)
[
γµ ·

(
− 1

2`
2 + (1− x)(1− y)q2 + (1− 4z + z2)m2

)
+
iσµνqν

2m

(
2m2z(1− z)

)]
u(p),

(9)



32 QUACH ANH TAI et al.

where as before, D = `2 −∆ + iε, ∆ = −xyq2 + (1− z)2m2 > 0. The decomposition into

form factors is now manifest.

Making use of the Dirac equation and a trick called “Wick rotation”, we get the expression

for the one-loop vertex correction

=
α

2π

1∫
0

dx dy dz δ(x+ y + z − 1)× ū(p′)

(
γµ
[

log
zΛ2

∆
+

1

∆

(
(1− x)(1− y)q2

+ (1− 4z + z2)m2
)]

+
iσµνqν

2m

[
1

∆
2m2z(1− z)

])
u(p).

The bracketed expressions are our desired corrections to the form factors. The form factor

we need is

F1(q
2) =1 +

α

2π

1∫
0

dx dy dz δ(x+ y + z − 1)×
[

log

(
m2(1− z)2

m2(1− z)2 − q2xy

)

+
m2(1− 4z + z2) + q2(1− x)(1− y)

m2(1− z)2 − q2xy + µ2z
− m2(1− 4z + z2)

m2(1− z)2 + µ2z

]
+O(α2).

(10)

Now let us confront the infrared divergence in our result (10) for F1(q
2). The dominant

part in the µ→ 0 limit, is

F1(q
2) ≈ α

2π

1∫
0

dx dy dz δ(x+ y + z − 1)

×
[
m2(1− 4z + z2 + q2(1− x)(1− y)

m2(1− z)2 − q2xy + µ2z
− m2(1− 4z + z2)

m2(1− z)2 + µ2z

]
.

(11)

The form factor in the limit −q2 →∞ is

F1(q
2 →∞) = 1− α

2π
log

(
−q2

m2

)
log

(
−q2

µ2

)
+O(α2). (12)

If the same relation holds for general q2, the measured cross section becomes(
dσ

dΩ

)
measured

≈
(
dσ

dΩ

)
0

[
1− α

π
fISR(q2) log

(
−q2 or m2

E2
`

)
+O(α2)

]
. (13)

Recall from Eq. (12), however, that we were careful to obtain the correct coefficient of

log2(−q2) in the limit −q2 � m2. In that limit, therefore, Eq. (13) becomes(
dσ

dΩ

)
measured

≈
(
dσ

dΩ

)
0

[
1− α

π
log

(
−q2

m2

)
log

(
−q2

E2
`

)
+O(α2)

]
. (14)
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Considering the O(α2) in total cross section calculation with ISR correction, we have

σtotal =
1∫
0

dxH(x, s)σ0
(
s(1− x)

)
[3], where

H(x, s) = ∆ ·βxβ−1−∆1β
(

1− x

2

)
+
β2

8

[
−4(2− x) lnx− 1 + 3(1− x)2

x
ln(1− x)− 2x

]
,

(15)

with ∆ = 1 + ∆δ(1) + ∆δ(2) and ∆1 = 1 + ∆δ(1), here ∆δ(1) is a part of the lowest order

corrections and so is ∆δ(2) of the second order corrections. Their formulas are given by

∆δ(1) =
α

π

(
3

2
L+

π2

3
− 2

)
and ∆δ(2) '

(α
π

)2
(L− 1)2

(
9

8
− π2

3

)
.

Contemplating the O(α) of ISR correction in total cross section calculation, we have

σtotal =
1∫
0

dxH(x, s)σ0
(
s(1 − x)

)
, where H(x, s) = ∆ · βxβ−1 − ∆1β(1 − x/2) with ∆ =

1 + ∆δ(1) + ∆δ(2), ∆1 = 1 + ∆δ(1) and β =
2α

π

(
ln

s

m2
− 1
)

[3], [4].

3 RESULTS AND DISCUSSIONS

Our main target is calculate the cross section of e+e− → tt̄ process at the energy region

from 350 GeV to 1 TeV with all diagrams contribution as Fig. 1.

γ
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Fig. 1: All diagrams for e+e− → tt̄ process at tree level.

Based on the data we get from GRACE system, we plot Fig. 2. This figure represents the

cross section distribution of e+e− → tt̄ process with all diagrams contribution. With ISR

effect, after emitting photons, the cross section distributions has been shifted to two parts,

the left handed side part is now below and the right handed side part is now above the

cross section distribution in case without ISR. This effect exists because of the behavior

of fISR function as Eq. (15). The energy of emitting photons is E` =
√
sx and the total

energy after emitting photon is
√
s′ = q(1− x)→ E` +

√
s′ =

√
s. We infer

fISR ∝ ln
E2
`

s
. (16)

To contemplate the e+e− beam polarization, we present the difference between the total

cross section as the function of CM energy of tt̄ pair production with the left-handed

electron and right-handed positron initial polarization.



34 QUACH ANH TAI et al.

400 600 800 1,000

0.2

0.4

0.6

E [GeV]

σ
[p

b
]

No ISR

ISR

Fig. 2: Total cross section of e+e− → tt̄ process from 350 GeV to 1 TeV center of mass energy

with all diagrams contribution.

Based on the results of total cross section of non polarization, e−L e
+
R (100%, 100%) and

e−Re
+
L (100%, 100%) in case without and with ISR, we plot Fig. 3.
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Fig. 3: Total cross section of e+e− → tt̄ process from 350 GeV to 1 TeV center of mass energy in

polarization cases e−e+ (100%, 100%) and non polarization case without and with ISR effect.

In these figures, the distribution of the cross section of e−L e
+
R is highest, the distribution of

e−Re
+
L is in the middle and the distribution in non polarization case is lowest. The reasons

of this behavior are because of the distributions of e−L e
+
L and e−Re

+
R are almost zero and the

distribution of non polarization case is the average of all four cases. Thus, this distribution

must be lower than the distributions in e−L e
+
R and e−Re

+
L beam polarization cases. The effect

of ISR just shifts the distributions but remains the relative positions of them.

Investigating the electron beam polarization in the real experiment, based on the results

of total cross section of non polarization, e−L e
+
R (80%, 30%) and e−Re

+
L (80%, 30%) in case

without and with ISR, we plot Fig. 4.
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Fig. 4: Total cross section of e+e− → tt̄ process from 350 GeV to 1 TeV center of mass energy in

polarization cases e−e+ (80%, 30%) and non polarization case without and with ISR effect.

This figure represents the total cross section of e+e− → tt̄ process from 350 GeV to 1

TeV center of mass energy in polarization cases e−e+ (80%, 30%) and non polarization

case without and with ISR effect. We can see that the ratio of e−L e
+
R and e−Re

+
L have been

changed. Hence, the distributions position are changed. The effect of ISR just shifts the

distributions but remains the relative positions of them.

To investigate the angular distribution, we calculate the total cross section for the following

process: e−L e
+
R → tt̄ and e−Re

+
L → tt̄. In our calculation, processes involving the e−L e

+
L and

e−Re
+
R combinations are omitted because they yield negligible contribution.

We now consider the angular distribution of e+e− → tt̄ process at 500 GeV colliding energy.

Exporting the data in GRACE system, we obtain enough data to plot Fig. 5.
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Fig. 5: Angular distribution of e+e− → tt̄ process with beam polarization at 500 GeV center of

mass energy.
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In Fig. 5 a), with ISR, there are some probabilities of changing angular distribution which

effect the energy of electron and positron, hence the angular distributions are shifted.

Therefore, we see the left handed side distribution with ISR effect are below the distribution

of no ISR case while the right handed side distribution with ISR effect are above the

distribution of no ISR case. In Fig. 5 b), we can see that the relative position between

the angular distributions in cases effected by ISR effect and in cases without ISR effect are

still the same.

Using GRACE system to calculate the total cross section of e+e− → tt̄ process from

350 GeV to 1 TeV center of mass energy in case without and with ISR. Then we use

numerical analysis method to handle the data and get the δISR. Based on the results in

non polarization and polarization e−L e
+
R(80%, 30%) cases, we plot Fig. 6.
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Fig. 6: δISR of e+e− → tt̄ process from 350 GeV to 1 TeV center of mass energy in non polarization

and beam polarization e−L e
+
R(80%, 30%).

We clearly see that the results are exactly the same. Thus, in conclusion, the ISR does not

effect on beam polarization e+e− → tt̄ process.

Using GRACE system to calculate the total cross section of e+e− → tt̄ at 500 GeV and

800 GeV center of mass energy. At 500 GeV, we see that the total cross section in case

with ISR O(α) is about 5% larger than the total cross section in case with ISR O(α2). At

800 GeV the total cross section in case with ISR O(α) is about 10% larger than the total

cross section in case with ISR O(α2). Based on these results, we can conclude that the

O(α2) has a very important effect on ISR correction. It represents how precise ISR O(α2)

can correct our results while study about e+e− → tt̄ process.
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4 CONCLUSIONS

In this paper, we have studied on the photonic radiative corrections of e+e− → tt̄ process

with and without beam polarization. Besides, we considered the angular distribution, the

δISR, the O(α) and O(α2) as well. We used the Quantum Field Theory to calculate out

the formula of the photonic radiative correction and applied it onto the GRACE system

for e−e+ → tt̄ process at the energy region from 350 GeV to 1 TeV. The results we

got from GRACE system were compared with the correspondence with the perturbative

calculation of the O(α2), and good agreements were found. Based on the results exported

from GRACE system in e−e+(100%, 100%) polarization case, we concluded that the effect

of ISR just shifted the cross section distributions but it still remained the corresponding

positions of them. Similarly, in e−e+(80%, 30%) polarization case, the effect of ISR had

the same behavior. Furthermore, we concluded that the ISR does not effect on angular

distribution of e−e+ → tt̄ process by considering the angular distribution. In addition,

the ISR does not effect on beam polarization of e−e+ → tt̄ process as well. Finally, by

investigating the deviation between ISR O(α) and O(α2), we inferred the significance of

the higher order in cross section calculation of e−e+ → tt̄ process.
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